Sl. No.

Total No. of Pages: 3

VI Semester III B.Sc. Examination, September - 2021 (Semester Scheme (CBCS)) PHYSICS (DSE) Solid State Physics

Time: 3 Hours Max. Marks: 80

Instruction: Answer any two each from Part - A, Part - B and Part - C, any three

from Part - D and any Ten from Part - E.

PART - A

- 1. Obtain expression for ripple factor and efficiency of a Bridge rectifier. [8]
- 2. What is biasing of a Transistor? Explain potential divider biasing of a Transistor.
 [8]
- 3. Obtain an expression for electron density in an intrinsic semiconductor at thermal equilibrium. [8]

PART - B

- Obtain an expression for specific heat of solids on the basis of Einstein's theory and discuss the results
- 5. a) Obtain an expression for Hall coefficient in metals. [5]
 - b) Deduce the relation between Hall coefficient and mobility. [3]
- a) Give the construction of AND gate using diodes and explain its working with the truth table.
 - b) Write the circuit of a half adder and explain its action. Give the truth table.

[4]

P.T.O.

PART - C

- 7. a) What is super conductivity? Explain the phenomenon on the basis of BCS theory. [5]
 - b) Explain the structure of Nematic liquid crystals.

[3]

- 8. Explain the construction and working of Bragg's x-ray spectrometer. [8]
- 9. a) Explain the structure of NaCl crystal.

[4]

b) Explain the origin of characteristic x-ray spectra.

[4]

PART - D

- 10. The intrinsic carrier density at room temperature in Ge is 2.37 × 10¹⁹ m³. If the electron and hole mobilities are 0.38 m²v⁻¹s⁻¹ and 0.18 m² v⁻¹s⁻¹ respectively, calculate the resistivily.
 [4]
- 11. The energy gap of silicon is 1.1 ev. Find the resistance of Si at 0°C, if its resistance at 100°C is 1000Ω .

Given: $k = 1.38 \times 10^{-23} \text{ Jk}^{-1}$.

[4]

12. Calculate the Fermi energy of Silver, assuming that the metal has one free electron per atom. Atomic weight of Silver 108, density of silver 10500 kg/m³.

[4]

- 13. Find the number of free electrons per unit volume in copper given relaxation time = 2.48×10^{-14} s and electrical conductivity $5.88 \times 10^{7} \Omega^{-1} \text{ m}^{-1}$. [4]
- 14. The spacing between principal planes of NaCl crystal is 2.82 × 10⁻¹⁰ m. It is found that first order Bragg reflection occurs at an angle of 10°. What is the wavelength of x-rays?
 [4]

PART - E

15.	a) b)	Write Barkhausen criterion. Define bandwidth.	[2] [2]
	c)	Draw the frequency response curve of a two stage RC coupled amplifier	
			[2]
	d)	Draw the circuit diagram of Hartley oscillator.	[2]
	e)	Explain Fermi-Dirac distribution function.	[2]
	f)	Give an example for M-B and B-E statistics.	[2]
	g)	Mention any two properties of dielectric materials.	[2]
	h)	What is electric polarization?	[2]
	i)	State Mosley's Law.	[2]
	j)	Mention any two applications of liquid crystals.	[2]
	k)	Explain Meissner effect.	[2]
	I)	Write any two applications of superconductivity.	[2]

https://www.uomonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेजे और 10 रुपये पायें,

Paytm or Google Pay सं