93705

Sl. No.

Total No. of Pages: 4

V Semester III B.Sc. Examination, March/April - 2021 (Semester Scheme) (CBCS) MATHEMATICS

DSE: Real Analysis - II and Algebra - III

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer all the five full questions.

2) First question carries 20 marks and remaining questions carry 15 marks.

- 1. Answer any Ten questions. Each question carries two marks.
 - a) Find infimum and supremum of the set $\left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \dots\right\}$.
 - b) Find the limit of the sequence $\left\{ \left(1 + \frac{3}{n}\right)^{n+1} \right\}$.
 - c) Show that the sequence $\left\{\frac{2n+3}{3n+5}\right\}$ is monotonically increasing.
 - d) Find the infinite series whose nth partial sum is $\frac{n}{n+1}$
 - e) Examine the convergence of the series $\sum_{n=1}^{\infty} \cos\left(\frac{1}{n}\right)$.
 - f) If the series $\sum_{n=1}^{\infty} a_n$ converges, then prove that $\lim_{n\to\infty} a_n = 0$.
 - g) Define an integral domain. Give an example of a ring which is not an integral domain.

93705 M-795

- h) Find all the units and zero divisions of the commutative ring Z_{12} .
- i) Show that $1-\sqrt{5}$ and $3+\sqrt{5}$ are associates in $Z(\sqrt{5})$.
- j) If ϕ is a homomorphism from a ring R into a ring R' then prove that $\phi(-a) = -\phi(a) \ \forall \ a \in \mathbb{R}$.
- k) Test the reducibility of $x^2 + 1$ over Z_s .
- 1) Define prime ideal and maximal ideal of a commutative ring.
- 2. Answer any three questions. Each question carries five marks.
 - a) Show that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is monotonically increasing and bounded above and hence show that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$.
 - b) Show that the sequence $\{a_n\}$ where $a_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$ is convergent.
 - c) Show that the sequence $\{x_n\}$ given by $x_1 = \sqrt{3}$ and $x_{n+1} = \sqrt{3}x_n$ converges to 3.
 - d) Prove that a convergent sequence is bounded. Does the converse true? Justify.
 - e) Discuss the convergence of the sequences

i)
$$\left\{ \frac{(n+3)(1+2+....+n)}{1^2+2^2+.....+n^2} \right\}$$

ii)
$$\left\{\frac{n(\log(n+1)-\log n)}{\sin(\frac{1}{n})}\right\}$$

93705 M-795

3. Answer any three questions. Each question carries five marks.

- State and prove Raabe's test for the convergence of a series of positive terms.
- b) Test the convergence of the series $1 + \frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots$
- c) Test the convergence of $\sum_{n=1}^{\infty} \left(\frac{nx}{n+1} \right)^n$.
- d) Discuss the convergence of $\frac{1}{1.3} \frac{1}{2.4} + \frac{1}{3.5} \frac{1}{4.6} + \dots$
- e) Sum to infinity the series $1 + \frac{4}{6} + \frac{4.5}{6.9} + \frac{4.5.6}{6.9.12} + \dots$

4. Answer any three questions. Each question carries five marks.

- a) Show that the set $Z[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in Z\}$ is a commutative ring with unity.
- b) Prove that a commutative ring Z_n is an integral domain if and only if n is a prime number.
- c) Show that the intersection of any two subrings of a ring R is again a subring of R.
- d) Show that the set of polynomials f(x) with f(3) = f(7) = 0 is an ideal.
- e) If $\alpha = a + b\sqrt{7} \in Z(\sqrt{7})$ and $N(\alpha) = a^2 7b^2$ prove that $N(\alpha\beta) = N(\alpha)$ $N(\beta) \ \forall \ \alpha, \ \beta \in Z(\sqrt{7})$ and α is a unit in $Z(\sqrt{7})$ if and only if $N(\alpha) = \pm 1$.

93705 M-795

- 5. Answer any three questions. Each question carries five marks.
 - a) Show that the polynomial $x^3 9$ is reducible over the field Z_{11} and find the factors.
 - b) Find the g c d of $f(x) = x^3 3x 2$ and $g(x) = x^5 x^4 6x^3 2x^2 + 5x + 3$ over Q and express it as a linear combination of f(x) and g(x).
 - c) Let f be a homomorphism from a ring R into a ring R' with Kernel k then prove that f(R) is isomorphic to a quotient ring R/K.
 - d) Prove that the Kernel of homomorphism $f: \mathbb{R} \to \mathbb{R}'$ is an ideal of \mathbb{R} .
 - e) Using Eisenstein's criterion, show that the polynomial $f(x) = 8x^3 + 6x^2 9x + 24$ is irreducible over Q.

https://www.uomonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से