93707

IIIIIIIIIII M-797

Sl. No.

Total No. of Pages: 2

V Semester III B.Sc. Examination, March/April - 2021 (Semester Scheme) (CBCS) MATHEMATICS

SEC - 02: Numerical Analysis

Time: 2 Hours

Max. Marks: 40

Instructions:

- 1) Answer all the questions.
- 2) First question carries 10 marks and remaining questions carry 15 marks.

1. Answer any five questions. Each question carries two marks.

- a) Find an interval in which a real root of the equation $x^3 2x^2 6x 4 = 0$ lies.
- b) State Runge Kutta order method to solve $\frac{dy}{dx} = f(x, y)$, $y(x_0) = y_0$.
- c) Construct a forward difference table for

x	0	5	10	15	20	25
f(x)	7	11	14	18	24	32

- d) Evaluate $\Delta^{10} (1-2x) (1-3x^2) (1-4x^3) (1-5x^4)$.
- e) Write Lagrange's interpolation formula for unequal intervals.
- f) By using Newton Raphson Method find $\sqrt{23}$ correct upto 3 decimal places.
- g) Show that $\Delta^3 y_0 = y_3 3y_2 + 3y_1 y_0$.
- h) State Simpson's $\frac{1}{3}$ rd rule for n intervals.

93707 M-797

- 2. Answer any three questions. Each question carries five marks.
 - a) Find a real root of the equation $x^3-x-4=0$ correct to three decimal places by Bisection Method.
 - b) Find a real root of the equation $x^3-3x+1=0$ correct to three decimal places by Newton Raphson Method.
 - c) Solve $\frac{dy}{dx} = 2xy + 1$ with y(0) = 1 Find y for x = 0 (0.2)1 using Euler cauchy method.
 - d) Use Picard's method to find approximate value of y at x = 0.2 for $\frac{dy}{dx} = x y$, y(0) = 1 upto 3^{rd} approximation.
 - e) Solve $\frac{dy}{dx} = x + y$ given that y(0) = 0 for x = 0 (0.1) 0.2 by modified Euler's method.
- 3. Answer any three questions. Each question carries five marks.
 - a) Find the 10th term of the Series 8, 12, 19, 29, 42 _____.
 - b) Estimate f(4.2) from the following table

х	0	2	4	6
у	2	10	66	218

- c) Derive the Trapezoidal rule using general quadrature formula for equidistant ordinates.
- d) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ with n = 5 using Simpson's $\frac{3}{8}^{th}$ rule.
- e) Evaluate $\int_0^2 (x^4 + x) dx$. with n = 6 by using Weddle's rule.

