SI.No.

Total No. of Pages: 3

V Semester B.Sc. Examination, Oct./Nov. - 2019 (Semester Scheme) (2015-16 Batch on Wards) MATHEMATICS

Algebra - III and Calculus - II (Paper - VI)

Time: 3 Hours Max. Marks: 80

Instruction: Answer all the sections.

SECTION - A

- I. Answer any Eight questions. Each question carries two marks.
 - a) In an Integral Domain D if a.b = a.c, $a \ne 0$ then prove that b = c.
 - b) Show that the set of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is a subring of the ring of 2 × 2 matrices with integral elements.
 - c) Define principal ideal and maximal ideal.
 - d) Verify whether $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x \forall x \in \mathbb{R}$ is a homomorphism or not
 - e) Find all the rings Z_n such that $x^5 10x + 12$ is divisible by $x^2 + 2$.
 - f) Find all the zeroes of $x^4 + 3x^3 + 2x + 4$ in $Z_3[x]$.
 - g) If f(x) = x + 1, $\forall x \in [0,1]$ and $P = \{0, \frac{1}{5}, \frac{1}{3}, 1\}$ Find L(P, f) and U(p, f)
 - h) If f is bounded and k < 0, then prove that $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$
 - i) Define Lower and upper Riemann integral of a bounded function f(x) over [a,b].
 - j) Verify whether the function

$$f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational is} \end{cases}$$

R-integrable over [a,b] or not

- k) State first mean value theorem of Integral calculus.
- I) If f is a bounded function and P is a partition of [a,b] then show that $U(p,f) \ge L(p,f)$

P.T.O.

SECTION - B

- II. Answer any eight questions. Each question carries four marks.
 - a) Show that the set $z_6 = \{0,1,2,3,4,5\}$ is a commutative ring with unity w.r.t. addition modulo 6 and multiplication modulo 6
 - b) Prove that every field is an integral domain
 - c) Prove that every integral Domain can be embedded isomorphically into the field of Quotients.
 - d) Show that intersection of any two ideals of a ring R is also an ideal of R.
 - e) If $\alpha = a + b\sqrt{7} \in \mathbb{Z}\left[\sqrt{7}\right]$ and $N(\alpha) = a^2 7b^2$, then prove that $N(\alpha\beta) = N(\alpha)N(\beta)$ for any two elements $\alpha, \beta \in \mathbb{Z}\left[\sqrt{7}\right]$
 - f) If k is an ideal of a commutative ring R prove that the transformation $f: R \to R/K$ defined by f(a) = k + a is an homomorphism with K as its kernel.
 - g) Find the GC.D of the polynomials $f(x) = x^3 + 1$ and $g(x) = x^3 + 2x^2 2x + 3$ and express it as a linear combination of f(x) and g(x)
 - h) Show that $2-\sqrt{17}$ and $-9-2\sqrt{17}$ are associates in the domain $\mathbb{Z}\left[\sqrt{17}\right]$
 - i) Test the equation $6x^4 7x^3 + 6x^2 1 = 0$ for rational roots.
 - j) Show that $x^3 9$ is reducible over \mathbb{Z}_{11} and find its factors.

SECTION - C

- III. Answer any eight questions. Each question carries four marks.
 - a) If $f: [a, b] \to R$ is R-integrable then show that $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ where m is infimum and M is supremum of f(x) on [a,b].
 - b) State and prove Darboux's theorem.
 - c) Show that every continous function is R-integrable

- d) Show that $f(x) = x^2$ is R-integrable over [0,1]
- e) If f is R-integrable then show that |f| is also R-integrable and show that the converse is not true in general
- f) If f and g are R-integrable then show that f + g is also R-integrable.
- g) Show that f(x) = 2-3x is R-integrable over [1,3] and prove that $\int_{0}^{1} (2-3x)dx = \frac{1}{2}$
- h) If $f(x) = \frac{1}{a^n}$ for $\frac{1}{a^{n+1}} < x \le \frac{1}{a^n}$, n = 0, 1, 2, ... = 0 for x = 0 Show that f(x) is Rintegrable over [0,1] and show that $\int_0^1 f(x) dx = \frac{a}{1+a}$
- i) If f(x) is R-integrable over [a,b] where a < c < b then prove that $\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$
- j) State and prove fundamental theorem of Integral calculus.

https://www.uomonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पार्ये, Paytm or Google Pay से